Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jan Honzíček, Jaromír Vinklárek, ${ }^{\text {a }}{ }^{\text {* }}$ Milan Erben ${ }^{\mathrm{a}}$ and Ivana Císařováb

${ }^{\text {a }}$ Department of General and Inorganic Chemistry, University of Pardubice, Čs. legií 565, 53210 Pardubice, Czech Republic, and ${ }^{\mathbf{b}}$ Department of Inorganic Chemistry, Charles University, Hlavova 2030, 12840 Prague 2, Czech Republic

Correspondence e-mail:
jaromir.vinklarek@upce.cz

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.087$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

μ-Oxo-bis[azidobis($\boldsymbol{\eta}^{5}$-cyclopentadienyl)titanium(IV)]

The title compound, $\left[\mathrm{Ti}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2} \mathrm{O}\right]$, is a dinuclear oxobridged azido complex with two titanocene fragments connected through the oxygen bridge. The environment around each Ti atom can be considered as a distorted tetrahedron.

Comment

The title compound, (I) (Fig. 1), is the main product of the reaction of titanocene dichloride (TDC) with sodium azide in aqueous solution. It is a dinuclear oxo-bridged complex in which two titanocene units are connected via an oxygen bridge. The molecule has approximately C_{2} symmetry and, similar to other oxo-bridged dinuclear complexes (Raptopoulou et al., 1996), the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ moiety is almost linear $[\mathrm{Ti}-$ $\left.\mathrm{O}-\mathrm{Ti}=172.03(8)^{\circ}\right]$. The coordination at each titanium(IV) center approaches tetrahedral geometry $[C g-\mathrm{Ti}-\mathrm{Cg}=$ 131.08 (4) and $131.67(5)^{\circ}$, and $\mathrm{N}-\mathrm{Ti}-\mathrm{O}=95.39$ (7) and $95.57(7)^{\circ} ; C g$ is the centroid of the cyclopentadienyl ring]. The cyclopentadienyl rings have staggered conformations in both titanocene fragments with $\mathrm{Cg}-\mathrm{Ti}$ bond lengths ranging from 2.0752 (11) to 2.0884 (12) \AA. The $\mathrm{Ti}-\mathrm{N}$ bond lengths [2.091 (2) and 2.0926 (19) Å] are slightly longer than those in the diazide titanocene complex $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{NNN})_{2}(2.03 \AA$; Villa et al., 1976) and comparable with those in the azide complexes $\left[\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{3}\left(\mathrm{~N}_{3}\right)\right.$ (bipy)], $\quad\left[\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}\left(\mathrm{~N}_{3}\right)_{2}(\text { py })_{2}\right] \quad$ and $\left[\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}\left(\mathrm{~N}_{3}\right)_{2}\right.$ (bipy)] (2.07-2.15 \AA; Carmalt et al., 1997). In (I), the coordinated azide groups are almost linear: $\mathrm{N} 1-\mathrm{N} 2-$ $\mathrm{N} 3=177.1(3)^{\circ}$ and $\mathrm{N} 4-\mathrm{N} 5-\mathrm{N} 6=177.6(2)^{\circ}$.

(I)

The very strong band in the IR spectrum of (I) at $724 \mathrm{~cm}^{-1}$ $\left[\nu_{a}(\mathrm{Ti}-\mathrm{O})\right]$ is typical for dinuclear oxo-bridged titanocene compounds (Samuel, 1966). Furthermore, the positive-ion ESI mass spectrum shows $[M+\mathrm{K}]^{+}(495)$ and $[M+\mathrm{Na}]^{+}(479)$ ions, which is entirely consistent with the structure of (I).

Experimental

The title compound was prepared according to a literature procedure (Coutts \& Wailes, 1966), with some modifications. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$ $(0.5 \mathrm{~g}, 2.0 \mathrm{mmol})$ was dissolved in boiling water $(30 \mathrm{ml})$. To this solution, sodium azide ($0.3 \mathrm{~g}, 4.6 \mathrm{mmol}$) was added and the mixture was cooled rapidly to room temperature. The orange precipitate was

Received 21 June 2004
Accepted 1 July 2004
Online 9 July 2004

Figure 1
The molecular structure of (I), showing 30% displacement ellipsoids.
filtered off, washed with water and vacuum dried (0.40 g , yield 78%). Yellow crystals suitable for X-ray analysis were obtained by careful layering of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with a double volume of hexane. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 6.37 ($\left.s, \mathrm{Cp}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): 117.0 (s, Cp). Positive-ion MS (ESI): $\mathrm{m} / \mathrm{z} 551$ [$M+\mathrm{Na}+$ methanol] ${ }^{+}, 495$ [M $+\mathrm{K}]^{+}, 479[M+\mathrm{Na}]^{+}, 414\left[M-\mathrm{N}_{3}\right]^{+}(100 \%), 220\left[\mathrm{Cp}_{2} \mathrm{TiN}_{3}\right]^{+}, 195$ $\left[\mathrm{Cp}_{2} \mathrm{TiOH}\right]^{+}$. Positive-ion MS/MS of 479: m/z $414[M+\mathrm{Na}-\mathrm{Cp}]^{+}$, $391[M-\mathrm{Cp}]^{+}(100 \%), 339,316,293$. IR (KBr pellet, cm^{-1}) : $3118(\mathrm{~m}$, $\left.v_{a} \mathrm{C}-\mathrm{H}, \mathrm{Cp}\right), 3091$ (sh, $v_{s} \mathrm{C}-\mathrm{H}, \mathrm{Cp}$), 2074 ($v s, v_{a} \mathrm{~N}-\mathrm{N}$), 1986 (m, $\left.v_{s} \mathrm{~N}-\mathrm{N}\right), 1448\left(m, v_{a} \mathrm{C}-\mathrm{C}, \mathrm{Cp}\right), 1346\left(s, v_{\mathrm{a}} \mathrm{C}-\mathrm{C}, \mathrm{Cp}\right), 1262(m, \delta \mathrm{C}-$ $\mathrm{H}, \mathrm{Cp}), 1022(s, \delta \mathrm{C}-\mathrm{H}), 822(v s, \gamma \mathrm{C}-\mathrm{H}), 724\left(v s, v_{a} \mathrm{Ti}-\mathrm{O}\right) 598(s)$, 408 (s). Raman (quartz capillary, cm^{-1}): 3112 (4) ($v_{a} \mathrm{C}-\mathrm{H}, \mathrm{Cp}$), 3096 (sh, $\left.v_{s} \mathrm{C}-\mathrm{H}, \mathrm{Cp}\right), 2096$ (<1), 2066 (1) ($v_{s} \mathrm{~N}-\mathrm{N}$), 1443 (1) ($v_{a} \mathrm{C}-\mathrm{C}$), 1366 (1), 1349 (2) ($\left.v_{\mathrm{a}} \mathrm{C}-\mathrm{C}, \mathrm{Cp}\right), 1131$ (10) ($\left.v_{s} \mathrm{C}-\mathrm{C}\right), 1082(<1), 1071$ (<1), $1020(<1), 945(<1), 866(<1), 843(<1), 423$ (1), 406 (1), 343 (6), 267 (9), 240 (7), 185 (7), 104 (6).

Crystal data

$\left[\mathrm{Ti}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2} \mathrm{O}\right.$
$M_{r}=456.22$
Monoclinic, $P 2_{1} / c$
$a=15.2860$ (4) \AA
$b=8.3620$ (2) \AA
$c=15.6900(4) \AA$
$\beta=101.0860(16)^{\circ}$
$V=1968.10(9) \AA^{3}$
$Z=4$

$D_{x}=1.540 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation

Cell parameters from 4685 reflections
$\theta=1-27.5^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, yellow
$0.30 \times 0.27 \times 0.20 \mathrm{~mm}$
Data collection
Nonius KappaCCD area-detector diffractometer
φ and ω scans
28006 measured reflections
4508 independent reflections 3429 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034\)
\(w R\left(F^{2}\right)=0.087\)
\(S=1.03\)
4508 reflections
262 parameters
H -atom parameters constrained
```

```
\(w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.041 P)^{2}\right.\)
```

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.041 P)^{2}\right.$
$+0.7094 P]$
$+0.7094 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\text {max }}=0.36$ e \AA^{-3}
$\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}$

```
\(\Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}\)
```

Table 1
Selected geometric parameters ($\left(\AA_{,}{ }^{\circ}\right)$.

$C g_{1}$ - Ti1	2.0884 (12)	Ti1-O1	1.8310 (14)
Cg_{2} - Ti1	2.0752 (11)	Ti2-O1	1.8311 (14)
$\mathrm{Cg}_{3}-\mathrm{Ti} 2$	2.0890 (11)	Ti1-N1	2.0926 (19)
Cg_{4}-Ti2	2.0850 (10)	Ti2-N4	2.091 (2)
$C g_{1}-\mathrm{Ti} 1-\mathrm{Cg}_{2}$	131.08 (4)	O1-Ti1-N1	95.39 (7)
$\mathrm{Cg}_{3}-\mathrm{Ti} 2-\mathrm{Cg}_{4}$	131.67 (5)	O1-Ti2-N4	95.57 (7)
N1-N2	1.171 (3)	Ti1-N1-N2	129.60 (16)
N2-N3	1.160 (3)	Ti2-N4-N5	129.81 (17)
N4-N5	1.138 (3)	N1-N2-N3	177.1 (3)
N5-N6	1.187 (3)	N4-N5-N6	177.6 (2)

Notes: $\mathrm{Cg}_{1}=$ centroid of atoms $\mathrm{C} 1-\mathrm{C} 5, \mathrm{Cg}_{2}=$ centroid of atoms $\mathrm{C} 6-\mathrm{C} 10, \mathrm{Cg}_{3}=$ centroid of atoms C11-C15 and $C g_{4}=$ centroid of atoms C16-C20.

All H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and $D E N Z O$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by a grant of the Ministry of Education of the Czech Republic (No. CZ 340003).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Carmalt, C. J., Cowley, A. H., Culp, R. D., Jones, R. A., Sun, Y. M., Fitts, B., Whaley, S. \& Roesky, H. W. (1997). Inorg. Chem. 36, 3108-3112.
Coutts, R. S. P. \& Wailes, P. C. (1966). Aust. J. Chem. 19, 2069-2072.
Hooft, R. W. (1998). COLLECT. Nonius, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Raptopoulou, C. P., Tzavellas, N. \& Klouras, N. (1996). Z. Anorg. Allg. Chem. 622, 1387-1391.
Samuel, E. (1966). Bull. Soc. Chim. Fr. pp. 3548-0000.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Villa, A. C., Manfredotti, A. G. \& Guastini, C. (1976). Acta Cryst. B32, 909914.

